CSC/ECE 517 Fall 2011/ch3 3h ss

From Expertiza_Wiki
Jump to navigation Jump to search

Introduction

In any programming language, the data type refers to the class of data which contains specific type or range of values. Data types are used along with variables used in the program. The data type tells us what kind of values the variable can store, what is the range of the values and how much space the values take in memory etc.

The primitive data types refer to the built-in data types which are supported by the programming language. Often 'data types' and 'primitive data types' are used interchangeably. But not all data types are primitive. Programming languages have some non-primitive data types or derived data types which are provided by the language by making use of its primitive data types.

The common built-in data types or primitive data types are integers, floating point numbers, characters, strings and boolean.

  • Integers - Integers represent the whole numbers which can be positive or negative or zero, e.g. 9999, 0, -25, etc.
  • Floating point numbers - Floating point numbers represent the numbers which are fractions or contain floating-decimal points, e.g. -3.002, 2.5, 22.0, etc.
  • Characters - Characters represent any single letter, number, space, punctuation mark, or symbol that can be typed on a computer, e.g. 'a', '9', ' ', '!' , '\n', etc.
  • Strings - Strings represent the sequences of characters or simply any text, e.g. "Hello!", "9 am to 6 pm", etc.
  • Booleans - Booleans represent the true or false values. Sometimes, instead of true and false, 1 and 0 are used to represent the boolean values.

Many object-oriented programming languages provide support for primitive data types while some object-oriented programming languages provide support for primitive objects along with primitive types.

Definition

Primitive objects refer to the objects of built-in classes which provide more functionality than the primitive types. Some object-oriented programming languages provide support for only primitive objects (i.e., in such languages all primitive types are objects).

Different object-oriented programming languages implement these primitive data types and primitive objects in a different manner.

Primitive objects in different OO languages

Java

In Java, there are 8 primitive types: boolean, char, byte, short, int, long, float, and double

For each of these primitive types, Java provides wrapper classes to create primitive objects which wrap the primitive data values. A wrapper not only contains the primitive data value, but it also defines properties and methods that can be used to manipulate that data. In Java, the primitive values are not implicitly converted to primitive objects. Instead, methods are provided for doing explicit conversion. The primitive objects are stored on heap in memory while the variables containing primitive values are stored on stack.

Primitive Type Wrapper Class Size
boolean Boolean 1-bit
char Character 16-bit
byte Byte 8-bit
short Short 16-bit
int Integer 32-bit
long Long 64-bit
float Float 32-bit
double Double 64-bit

Example:

   int i = 10;
   int ii = 20;
   Integer I = new Integer(i);
   Integer II = new Integer(ii);
   System.out.println(I+II);            
   System.out.println(I.equals(II));    

Output:

   30
   false


These wrapper classes are primitive or not can be found using isPrimitive() method.

   System.out.println(INTEGER.TYPE.isPrimitive());
   System.out.println(BOOLEAN.TYPE.isPrimitive());

Output:

   true
   true

C#

C# is a strongly typed language, where it is necessary to declare the data type of a variable and also be aware of the data type conversion. C# provides a significant number of primitive data types. See [1]

Because C# represents all primitive data types as objects, it is possible to call an object method on a primitive data type. For example:

   static void Main()
   {
       int x = 7;
       object o = x;
       System.Console.WriteLine(o.ToString());
   }

Some data types (e.g. Decimal and String) can appear like primitives at first sight, but are actually not. So it is important to exercise caution before making such assumptions. To test whether a particular type is a primitive or not you can use the property Type.IsPrimitive.

Consider the following example:

   if (t.IsPrimitive)    // where t is the type
   {
       // Is Primitive
   } else if (t == typeof(Decimal))
   {
       // Is Decimal
   } else if (t == typeof(String))
   {
       // Is String
   } else
   {
       // Other type
   }

JavaScript

There are 5 primitive data types in JavaScript: string, number, boolean, null and undefined.

For string, number and boolean values, there are corresponding classes just like in Java to create primitive objects which wrap the primitive values.

Primitive Type Wrapper Class
string String
number Number
boolean Boolean

In JavaScript, the primitive value is implicitly converted to a primitive object whenever someone tries to access a property or invoke a method on the primitive value and the primitive object is used in place of the primitive value. Since the object contains properties and methods, the use of primitive value as an object succeeds. After the property is accessed or the method is processed, the primitive object is no longer needed and hence discarded. The same is true for the other primitive types and their corresponding primitive objects.

Example:

   var upperCaseString = "APPLE";
   var lowerCaseString = upperCaseString.toLowerCase();  // assigns string "apple" to lowerCaseString 
   var s = "Hello"
   var len = s.length;                                   // assigns value 5 to len

Ruby

Since Ruby is a pure object oriented language, everything in Ruby is an object. Hence, all primitive types such as integers, floating point numbers, strings, are objects of a built-in class. All integers are primitive objects of either class Fixnum or Bignum. A numeric literal with a decimal point and/or an exponent is a primitive object of Float. Single quoted literals and double quoted literals are primitive objects of String.

Example:

   puts 10.class
   puts 7.45.class
   puts 'hi'.class
   puts "hello".class

Output:

   Fixnum
   Float
   String
   String

This indicates that 10 is converted into an object of type Fixnum, 7.45 is converted into an object of type Float, 'hi' and "hello" are both converted into an object of type String.

Since all primitive types in Ruby are objects, we should be able to call methods of the Object class on them. Let us demonstrate the same for integer and float using the following example:

   a=10
   puts a.to_f  
   b=20.5
   puts b.to_i

Output:

   10.0
   20

Advantages of primitives

There are several advantages of treating primitives differently from class objects. Here are some:

  • Accessing an object may require a lot of memory look-ups, depending on the implementation of the language. Accessing the values of primitive variables is faster that accessing data in objects since primitives require fewer memory fetches.
  • It improves performance and verification. Primitive types such as integers, boolean, floats are the frequently used features of an object oriented programming language like. So, we want operations involving variables of these types—operations that are at the heart of our computing model—to run fast.
  • It provides several methods and instance variables to the primitive types which simplifies the code.

Disadvantages of primitives

  • The primitive types limit the range of values a variable can take. e.g. In Java, a variable of type int or an object of Integer can have only one of the 2^32 values i.e. from -(2^16) to (2^16)-1.
  • The primitive type values cannot be passed to a method which expects the objects.

References

1. Java's Primitive Data Types
2. Primitives in Javascript
3. C# Primitive Datatypes
4. Data Types (C# vs. Java)
5. Pros and cons of primitives
6. Stack and Heap memory