CSC/ECE 506 Fall 2007/wiki1 10 mt: Difference between revisions

From Expertiza_Wiki
Jump to navigation Jump to search
Line 7: Line 7:
===Dataflow===
===Dataflow===


Dataflow architecture is in oppostion to the [http://en.wikipedia.org/wiki/Von_Neumann_architecture von Neumann] or control flow architecture which has memory, and I/O subsystem, an arithmetic unit and a control unit. The one shared memory is used for both program instructions and data with a data bus and address bus between the memory and processing unit. Because instructions and data must be fetched in sequential order, a bottleneck may occur limiting the throughput between the CPU and the memory.  
'''Dataflow architecture''' is in oppostion to the [http://en.wikipedia.org/wiki/Von_Neumann_architecture von Neumann] or control flow architecture which has memory, and I/O subsystem, an arithmetic unit and a control unit. The one shared memory is used for both program instructions and data with a data bus and address bus between the memory and processing unit. Because instructions and data must be fetched in sequential order, a bottleneck may occur limiting the throughput between the CPU and the memory.  


The dataflow model of architecture, in contrast, is a distributive model where there is no single point of control and the execution of an instructions takes place only when the required data is available. Dataflow models are typically represented as a graph of nodes where each node in the graph is an operation to be executed when its operands become available along with the address of the subsequent nodes in the graph that need the results of the operation.  
The dataflow model of architecture, in contrast, is a distributive model where there is no single point of control and the execution of an instructions takes place only when the required data is available. Dataflow models are typically represented as a graph of nodes where each node in the graph is an operation to be executed when its operands become available along with the address of the subsequent nodes in the graph that need the results of the operation.  

Revision as of 11:37, 5 September 2007


Dataflow & Systolic Architectures

The dataflow and systolic models are two of the many possible parallel computer architectures. Unlike shared address, message passing and data parallel processing, the dataflow and systolic architectures were not as commonly used for parallel programming systems although they recieved a considerable amount of analysis from both private industry and academia.

Dataflow

Dataflow architecture is in oppostion to the von Neumann or control flow architecture which has memory, and I/O subsystem, an arithmetic unit and a control unit. The one shared memory is used for both program instructions and data with a data bus and address bus between the memory and processing unit. Because instructions and data must be fetched in sequential order, a bottleneck may occur limiting the throughput between the CPU and the memory.

The dataflow model of architecture, in contrast, is a distributive model where there is no single point of control and the execution of an instructions takes place only when the required data is available. Dataflow models are typically represented as a graph of nodes where each node in the graph is an operation to be executed when its operands become available along with the address of the subsequent nodes in the graph that need the results of the operation.

Included in the dataflow model of architecture there is also static and dynamic dataflow. The static dataflow model is characterized by the use of the memory address to specify the destination nodes that are data dependent. The dynamic model uses content-addressable memory which searches the computer memory for specific tags. Each subprogram or subgraph should be able to execute in parallel as separate instances. In the dynamic dataflow model, programs are executed by dealing with tokens which contain both data and a tag. A node is executed when incoming tokens with identical tags are present.

Systolic

Systolic architecture sought to replace the uniprocessor architecture by stringing together a system of processing elements in arrays, known as systolic arrays. Their initial birth came from the bottleneck that can occur between a Central Processing Unit (CPU) and a memory request to the main-memory. A uniprocessor must sit and wait for the result from main memory to return or request another data item. In a systolic architecture, the data moves through a system via regular, timed "heartbeats" (the term systolic actually refers to the systolic contraction of heartbeats [1]) and work is done in-between each heartbeat. Each processor produces a new data item after each heartbeat. Those items are then either continued on the journey toward completion, or returned to the main memory. The systolic architecture's ability to put highly specialized computation under simple, regular and highly localized communication patterns are the key to the systolic architecture. [2]

New Developments in Dataflow and Systolic Architectures

Dataflow Architecture Currently

Since the 1990's, little advancement has been made in the field of dataflow architecture. Dataflow was primarily abandoned due to several problems.

  1. The dynamic dataflow model requires some sort of associative memory to store the tokens waiting to be matched. Unfortunately, even in moderate size programs the required memory needed for storage tends to be large and therefore not very cost efficient.
  2. Dataflow programs typically made use of multiple threads since parallel functions and loops were frequently used in the programming. Therefore, if there wasn't enough of a workload for multiple threads, single threaded execution of a program provided poor performance.
  3. The dataflow model failed to take advantage of locality such as the usage of local registers and cache. Since all information for the tokens (data and tags) moves through the network, it is difficult to transfer all that information in a timely efficient manner over a large parallel system.


Regardless of the problems that the dataflow model of machine design encountered, today out of order execution, which is a form of restricted dataflow is one of the most successful models of microprocessor design. AMD and Intel both implemented an architecture where after decoding into RISC instructions, the instructions are placed in a central pool where they are allowed to execute in the order which is best matched to the current resources available.

One particular attempt at improving the performance of the dynamic dataflow model was the explicit token store approach dubbed Monsoon and developed by Gregory M. Papadopoulos and David Culler. There approach was a more efficient approach to token matching by developing a form of local storage for the tokens. Monsoon makes use of an activation frame

Enhancing data flow with control flow

Systolic Architecture Currently

There are several limitations to systolic architecture that have held back it's progress:

  1. They are restricted to applications with strictly regular data dependencies.
  2. They have a general lack of flexibility.
  3. They are only suitable, once designed, to support only one application problem, not several.[3]

The majority of advancements in the realm of systolic architecture focus more on the application of the architecture as opposed to advancement of the architecture itself. Several papers propose different applications for systolic architecture:

  1. One such paper, A Unified Systolic Architecture for Combined Inter and Intra Predictions in H.264/AVC Decoder, focuses on the efficiency of video coding. Presented by three professors, Chih-Hung Li, Chih-Chieh Chen, Wei-Chi Su, of the Cheng-Kung University in Taiwain, this 2000 paper presents an increase in hardware utilization and minimization of cost using a combination of inter and intra predictions. These predictions are produced via a re-programmable FIR filter. A systolic array is used in the further implementation of this process. The three conclude that the use of systolic architecture greatly reduce the cost of processing and improved performance. They argue that their design, in comparison to other designs, produces a lower cost and power (but a higher throughput). [4]
  2. Another paper, High-Speed Systolic Architectures for Finite Field Inversion and Division, written in combination by Dilip V. Sarwate of University of Illinois at Urbana-Champaign and Zhiyuan Yan of Lehigh University. The two propose the use of systolic architectures for finite field inversion and division. They claim that the systolic architecture shows a marked performance when compared to other, previously used, architectures, achieving an O(m2) area-time complexity, O(m) latency and a critical path delay on two logic gates. [5]