CSC/ECE 517 Fall 2015/M1506-Refactor-GLES2-Implementation: Difference between revisions
No edit summary |
|||
Line 37: | Line 37: | ||
* Place a general #cfg flag for both Android and Linux to provide a more generic implementation of dynamic selection between GL and ES2 | * Place a general #cfg flag for both Android and Linux to provide a more generic implementation of dynamic selection between GL and ES2 | ||
* Make changes to EGL platform to make it work on desktop GL | * Make changes to EGL platform to make it work on desktop GL | ||
=='''Files modified'''== | |||
Servo/components/utils/opts.rs: added the new command line option to allow selecting the graphics backend. | |||
rust-layers/src/rendergl.rs: changed the RenderContext new function to allow the dynamic selection of graphics backend. | |||
=='''Files to be modified'''== | |||
rust-layers/src/platform/surface.rs: providing generic GL implementation that can dynamically select between the 2 interfaces. | |||
=='''Useful libraries'''== | |||
waffle-gl/waffle: A C library for selecting an OpenGL API and window system at runtime. | |||
=='''Design Pattern'''== | =='''Design Pattern'''== |
Revision as of 22:14, 13 November 2015
' Refactor GLES2 Student Project with SERVO & RUST '
Servo is a prototype web browser engine written in the RUST language.Servo uses a variety of back-end implementations for drawing graphics depending on the operating system.One of such back-end is only compatible with Android right now, and we want to extend and refactor that back-end to enable on all Linux systems..
Introduction
Servo
ServoServo is an open source prototype web browser layout engine being developed by Mozilla, and it is written in Rust language. The main idea is to create a highly parallel environment, in which different components can be handled by fine grained, isolated tasks. The different components can be rendering, HTML parsing, etc.
Rust
Rust is an open source systems programming language developed by Mozilla. Servo is written in Rust. The main purpose behind it's design is to be thread safe and concurrent. The emphasis is also on speed, safety and control of memory layout.
Project Description
- The project requirement initially stated that we build and Compile servo. Following are the steps for this:
Servo is built with Cargo, the Rust package manager. Mozilla's Mach tools are used to orchestrate the build and other tasks.
git clone https://github.com/servo/servo cd servo ./mach build --dev ./mach run tests/html/about-mozilla.html
- The next requirement was to build the Rust-layers independently of Servo. For this, we
- Next, we had to over-ride cargo to use our local copy of Rust-layers, so we had to add a cargo override to it. For this, we created a
.cargo
folder in our home directory(same place that servo and Rust-layers reside), and added aconfig
file to that folder. The content of that config file is a path to our local Rust-layers.
paths = [path/to/rust_layers]
- Next, we had to add a new command line argument in Servo, which would allow selecting the graphics background (GL or ES2). For this, we made the following changes:
- We added a command line option which lets the user enter the option -E
or --es2
if the user wants to set ES2 as the graphic back end option. GL is set by default, hence if the user doesn't give any argument, Gl is selected as the graphic back end option. Example is as below
./mach run [url] -E
- Next, we had to add a flag in Rust-layers. This change was made in the file Rust/src/rendergl.rs in the
RenderContext::new
function. For this, we did the following change:
- We defined an enum GraphicOption
which defined two options GL
and ES2
and then based on the boolean value from the servo opts.rs
, we set a variable with the respective enum value GL
or ES2
.
- Finally, we had to use the new command line option to pass the selected graphics back-end option to the Rust-layers context which we created in the previous step. For this we made changes to the compositor.rs in Compositing folder which is how Servo interacts with the Rust layers. The command line option is passed through the
initialize_compositing
function.
Requirement Analysis
Earlier, only OpenGL implementation was supported for Linux targets and we would be extending the ES2 implementation to support it for linux targets too. As a part of the final project, we propose to perform the following steps:
- Change the platform implementation to provide a more generic way to dynamically select between GL and ES2.
- Remove the Linux/Android specific #cfg flags.
- Place a general #cfg flag for both Android and Linux to provide a more generic implementation of dynamic selection between GL and ES2
- Make changes to EGL platform to make it work on desktop GL
Files modified
Servo/components/utils/opts.rs: added the new command line option to allow selecting the graphics backend. rust-layers/src/rendergl.rs: changed the RenderContext new function to allow the dynamic selection of graphics backend.
Files to be modified
rust-layers/src/platform/surface.rs: providing generic GL implementation that can dynamically select between the 2 interfaces.
Useful libraries
waffle-gl/waffle: A C library for selecting an OpenGL API and window system at runtime.
Design Pattern
We attempted to follow good OO practices by implementing the Strategy design pattern using Enum.
Conclusion
After making our changes , the user can now dynamically pass in the option of GL or ES2 through the graphic command line option, and this option is passed on through the compositor to the rust layers during initialization. A video demonstration for the code changes is available here
References
1. https://doc.rust-lang.org/stable/book/
2. https://en.wikipedia.org/wiki/Rust_(programming_language)
3. https://en.wikipedia.org/wiki/Servo_(layout_engine)
4. https://github.com/servo/servo/wiki/Refactor-GLES2-student-project
5. http://doc.crates.io/guide.html#overriding-dependencies
6. http://rustbyexample.com/
7. http://javarevisited.blogspot.com/2014/11/strategy-design-pattern-in-java-using-Enum-Example.html