CSC/ECE 506 Spring 2012/4b rs: Difference between revisions

From Expertiza_Wiki
Jump to navigation Jump to search
Line 22: Line 22:
====Derivation of Gustafson's Law====
====Derivation of Gustafson's Law====
If p is the number of processors, s is the amount of time spent (by a serial processor) on serial parts of a program and 1-s is the amount of time spent (by a serial processor) on parts of the program that can be done in parallel, then [http://en.wikipedia.org/wiki/Gustafson%27s_law#Derivation_of_Gustafson.27s_Law Amdahl's law] says that speedup is given by:
If p is the number of processors, s is the amount of time spent (by a serial processor) on serial parts of a program and 1-s is the amount of time spent (by a serial processor) on parts of the program that can be done in parallel, then [http://en.wikipedia.org/wiki/Gustafson%27s_law#Derivation_of_Gustafson.27s_Law Amdahl's law] says that speedup is given by:
<math>\frac{1}{N}</math>
<math>
  \operatorname{erfc}(x) =
  \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
  \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
</math>


====Gordon Bell prize====
====Gordon Bell prize====

Revision as of 01:00, 13 February 2012

The limits to speedup

Introduction

In parallel computing, speedup refers to how much a parallel algorithm is faster than a corresponding sequential algorithm. According to Amdahl's law the speedup of a program using multiple processors in parallel computing is limited by the time needed for the sequential fraction of the program. But this solves a fixed problem in the shortest possible period of time, rather than solving the largest possible problem (e.g., the most accurate possible approximation) in a fixed "reasonable" amount of time. To overcome these shortcomings, John L. Gustafson and his colleague Edwin H. Barsis described Gustafson's Law, which provides a counterpoint to Amdahl's law, which describes a limit on the speed-up that parallelization can provide, given a fixed data set size.

Types of speedup

Scaled speedup

Gustafson's Law

Gustafson's Law says that it is possible to parallelize computations when they involve significantly large data sets. It says that there is skepticism regarding the viability of massive parallelism. This skepticism is largely due to Amdahl's law, which says that the maximum speedup that can be achieved in a given problem with serial fraction of work s, is 1/s, even when the number of processors increases to an infinite number. For example, if 5% of computation in a problem is serial, then the maximum achievable speedup is 20 regardless of the number of processors. This is not a very encouraging result.

Amdahl's law does not fully exploit the computing power that becomes available as the number of machines increases. Gustafson's law addresses this limitation. It considers the effect of increasing the problem size. Gustafson reasoned that when a problem is ported onto a multiprocessor system, it is possible to consider larger problem sizes. In other words, the same problem with a larger number of data values takes the same time. The law proposes that programmers tend to set the size of problems to use the available equipment to solve problems within a practical fixed time. Larger problems can be solved in the same time if faster, i.e. more parallel equipment is available. Therfore, it should be possible to achieve high speedup if we scale the problem size.

Example:

   s (serial fraction of work) = 5%
   p (number of processors) = 20 
   speedup (Amdahl's Law) = 10.26
   scaled speedup (Gustafson's Law) = 19.05

Derivation of Gustafson's Law

If p is the number of processors, s is the amount of time spent (by a serial processor) on serial parts of a program and 1-s is the amount of time spent (by a serial processor) on parts of the program that can be done in parallel, then Amdahl's law says that speedup is given by: <math>

 \operatorname{erfc}(x) =
 \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
</math>

Gordon Bell prize

Superlinear speedup

Conclusion

References